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Summary

J
A statistical sensitivity analysis may be defined and performed

in terms of the response of a vector of parameter estimates to variation

in the way sample information is processed vis-a-vis to tentative under-

lying model. The mode of information processing is a generalization

of likelihood and is indexed on a non-statistical parameter c. The case

c=O corresponds to maximum likelihood. If the vector of parameter

estimates is stable under moderate increase of the index c from 0, the

tentative model and the data are internally consistent. A general

procedure for the conduct of such sensitivity analyses is given along

with several illustrations. For fixed, positive values of the index, one

obtains a general robust estimation procedure. (

Key Words: sensitivity analysis, robust procedure, Gaussian, logistic,

Weibull, extreme value, Poisson, generalized likelihood
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1. Introduction

Sensitivity analyses are routinely and usefully performed in the

engineering disciplines, in operational research, to name just a few.

The objective of a sensitivity analysis is to determine the response of

a solution to changes in the assumptions, to changes in the data, or to

changes in the information that are used in modeling representations of

reality. Also within the purview of a sensitivity analysis is the deter-

mination of responses of a solution to changes in the way in which

information is processed. If small or moderate perturbations in the

aesumptions, data, processing, etc. produce large changes in a solution,

then valuable information has been provided for the analyst or the modeler

since certain facets of the model or of the information are critical or

require further attention.

Residual analysis, jackknife procedures, and robust procedures

provide several ways in which a sensitivity analysis may be performed in

a statistical setting. In this setting the data and a tentatively assumed

model should be considered as a single entity. The objective of a sensi-

tivity analysis is to determine whether the data and the tentatively

assumed model are internally consistent and this may be effected by con-

trolling the way information provided by the data is incorporated in the

evaluation of model parameters. A sensitivity analysis can also be most

useful in model evolution. We propose herein a general procedure for

performing a sensitivity analysis of a data-model unit and, secondarily,

a general procedure for producing robust estimators of location, scale,

shape, etc. parameters.
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There is by now an extensive literature on robust methods for

location problems. Barnett and Lewis (1978), Huber f1981), and Rey (1977)

provide useful summaries of currently available robust methods. There

are few papers on construction of robust estimators for non-location

parameters and asymmetric distributions. This paper provides such a

construction. It is based on what is believed to be a new generalization

of the likelihood or Shannon's information. The procedures we propose

are easily implemented and are readily applied in a modeling or structured

data framework. Several examples are provided. The Gaussian, Weibull,

gamma, logistic, and Poisson distributions are explicitl- considered.

2. Construction of a Family of Estimators

Let xlx 2,... ,x be a random sample from the normal density

2 2 2
n(x;u,a 2) = (2ra 2) exp(- (--) ). (2.1)

The log likelihood for the location parameter V, a assumed momentarily

to be known, is

n 2 n n 2 n x- 2
L(I) I log f(xj;ia 2) - - log 2, = - n log a - I % 2j=1 2 21j =1l

(2.2)

The maximum likelihood estimator of U is determined by minimizing the

quadratic form

n
5 ( )2 (2.3)j=1 xj-

with respect to U. In a seminal paper Huber (1964) suggested that P

be estimated by replacing the quadratic in (2.3) by
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n
I X p(xj-1), (2.4)

j=1

where P(C) is a convex function which increases less rapidly than a

quadratic; in particular the choice

I u2  ui K
p(u) = (2.5)

Klul - 2, juj>K

is optimal in a minimax sense. Thus (2.4) represents a change (from

(2.3)) in the way the information provided by the x. for the model

n(x;u,a 2) of (2.1) is processed.

Whereas Huber recommended perturbing the quadratic form of (2.3),

we shall perturb the negative of the likelihood or the Shannon infor-

mation

I = - log n(x -;jlo (2.6)

The more surprising an item of information, that is an x. which must be

extreme, the larger the information - log n(x ;P,o2). See Barnett and

Lewis (1918, Chapter 9). The information (2.6) is unbounded. If

difficulties with the data-model entity are expected, it is natural to

curb the information since it is unbounded. Figure 1 gives a plot of

- log n(x;O,1) labeled c=O, a single term of I in (2.6). We do not

advocate discarding the large information items but rather wish to partition

the information so that we can find and isolate the surprising items and

call attention to them for further study. The isolation of surprising

items is not especially difficult when structure is not involved; graph-

ical techniques, for example, are especially informative. However, when
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structure is involved, the matter" i4 no longer simple and powerful tools

may be needed.

How should the likelihood be perturbed in order to produce procedures

for sensitivity analysis and robust estimation?

We first address the problem of a general density and return to

the Gaussian case in the next section. Let x1 ,x 2 ,... xn be now a random

sample from an absolutely continuous density f(xle) whose interval of

support is non-trivially --<x<- and where, for concreteness of discussion

ant without loss of generality, 8 is taken to be a scalar taking on values

in some open set 0. Suppose further that f(xie) possesses sufficient

regularity to permit the standard maximum likelihood operations (Kendall

and Stuart, 1966, Vol. II, Ch. 18). For each i, i=1,2,...,n

f f(xije) dx =1 (2.7)

On taking partial derivatives of both sides of (2.7) with respect to 8

we find

- a e f(xile) dx.=O (2.8)

a log f(xil6)

The equation (2.8) implies that E ae 0. Further an

estimator 6, say, of 8 may be obtained from the zeros of

n a log f(x6le)

ae (2.9)

which is arrived at on summing the quantity in brackets {.} in (2.8)
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over i and setting the resulting expression to zero. This expression

coincides with the estimating equation derived from differentiating the

log likelihood

n n fC(x ij e )-i
to(e)  I log f(xile) lim (2.10)

i=1 c4O i=1

with respect to 8.

Now the likelihood is essentially a geometric mean which is in

turn a special case of the generalized mean

1nn c /cM(e,c) = C- Z f(xIe)), (2.11)
n

This suggests that it may be useful to determine estimators of e which

make use of the density raised to the cth power. There is some evidence

for such an approach in the work of Paulson and Nicklin (1981) involving

estimators derived from distances between characteristic functions.

Under very mild regularity conditions on the density f(xi16) there exists

a function Q(e;c) such that

Jfl+c (xie6) dxi  Q(e;c) (2.12)

for some -k1I<c<k 2, kl,k2>O. Then

fl+c(Xije)

Q(e;c) dx. 1, (2.13)

and
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( f fl+c (x e) f Itc alog f. flI+Ca (8c dxi T 1(1+c) i i i a log Q dxi=0 ,

Q(G;c) Q 1 Q '_
(2.14)

on interchange of differentiation and integration. The arguments of

f(xile) and Q(O;c) have been deleted in (2.14) for notational convenience

and this will often be done where there is no danger of misinterpretation.

From (2.14) we find

fc alog f. lo 2.5

f.j. [.1+c) a Jdx.=O. (.5

We thus choose as our estimating equation for 8,

n a log f(xile) 3 log Q(e;c)
fC(xile) I (1+c) -_ e =o, (2.16)

the quantity in {. in (2.15), indexed on i and summed over i. This is

exactly analogous to the way in which (2.9) was determined to be the

maximum likelihood estimator of e. Observe that Q(6;0) = 1 and that

(2.16) reduces to the usual likelihood equation. The maximum likelihood

estimating equation (2.9) was developed by means of score function argu-

ments. Equation (2.16) is also developed by means of score function

arguments. A bona fide objective function which gives rise to (2.16)

would be of considerable practical and theoretical importance. If we

regard (2.16) as a differential equation we find that the corresponding

objective function is given by

(e I n11~xie (2.17)c 1 1 71c)
i=1 (Q(O;c))c/(c I
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as may be verified by differentiation with respect to e. When c-*O in

(2.17), tc(e) 0 (0), the log likelihood. It is interesting to note that

e (e) does not coincide with the right-most side of (2.10).
Perhaps a comment on what we are not doing is merited here. We

are not introducing a new density which is now a function of the original

parameter 0 and a new statistical parameter c. It is helpful to view

c as an index of how information is to be processed and which is entirely at

the data analyst's disposal. The objective is still the estimation of

the parameter 8 of the assumed (and tentative) density f(xIO) based on

the sample data x,,x2,... ,xn but now we are interested in separating out

surprising items by utilizing in the estimation process different

measures of information, namely those indexed on c and given in (2.17).

For example, Figure 1 provides plots of

1 nC(xl0,l) i
C =  E Q(0,1;c)Jc/(I+c)

with c=0, .1, .25, .5, 1. This measure of information is bounded for c>0

but is unbounded for c50. Increasingly greater weight is given to tail

observations as c decreases from zero.

Apart from the case c=0, an interesting special case is providedn

by c=1 for which e is estimated by maximizing nf(xi )/Q (;). Noi=l I

other special case seems to be of articular interest. An estimator c

may be determined as that value of 8 which maximizes £ (0). Equation
c

(2.17) holds under quite general conditions. For example, 8 and the x.

need not be restricted to scalar values, and the density f need not be

absolutely continuous.
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The above construction provides a means by which we can determine

the response of a solution to changes in the way the information is pro-

cessed. In particular, the quantity

ec -Oct

c-c,

will provide a qualitative measure of the sensitivity of response of the

estimator 6 to changes in the user-specified index c. The values c>O,c

c=0 are especially interesting. Surprising items are not permitted to

exert a large influence on the information measure under c>O and thus F

not permitted to exert a large influence on the parameter estimates.

When the interval of support of the density f(xl8) is infinite on both

the left and the right then surprising items will be identified by a

low weight fc(xle)/Q(e;c) in (2.16) (see also (2.15)). Indeed, the

pattern of the weights fC(xile)/Q(8;c) provides very useful diagnostic

information. We now examine some special cases.

3. The Gaussian Distribution

The most important error model in statistics is provided by the

Gaussian distribution given in (2.1). Suppose c>O is fixed. We shall

derive robust estimators for U and a2 from (2.17). We find by straight-

forward integration that

f l+c (xj ,a 2)dx E(I+c)(2r 2 )c)- 2 c). (3.1)

n =u1a ) et analogue o )e

Letc (U, 2) be the two-parameter analogue of (2.17). Differentiation
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2 2 2of (1, 2 ) with respect to P and a or substitution in (2.16) of Q( ,a2,c)

leads to the simultaneous estimating equations

n ( xi-" 2) 0. 32(x-)exp 2 a (.2
n2 

2

{(1+c)(xi-p)2 - a2 } exp (=)2) . (3.3)
i=1

The estimators and 2 jointly satisfy the implicit equations

x. v

a. ic (3.4)

[ vic

2 (xi-P) 2 v.
a (l+c) c (3.5)

where

v exp (3.6)ic 2 a ) "
The estimators and a2 have a single solution for c in a

e ec

neighborhood of zero. Just how large this neighborhood is as a functf.or.

of n and c is not known. However, when c becomes too large multiple

solutions may arise. The estimators U^ and a2 are M-estimators and arec c

consistent for p and a2 when the x,x 2 ,... ,xn are a random sample from a

2Gaussian distribution with mean P and variance a , provided the consistent

zeros of (3.2) and (3.3) are chosen. In this case c-( _ &2 _G2  is

asymptotically bivariate normal with mean vector 0 and covariance matrix

S  (+2c 3 2+4c+3c 2

1+2c
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(Asymptotic expressions are given as we proceed since they will usually

be more naturally presented in this manner. Details are given in section

7 .-) Thus c and ;2 are asymptotically independently distributed. The

value c = - is a singularity of the covariance matrix y and only values

- <c<- are permissable. The asymptotic efficiencies for gc and a2
c c

relative to 0 and a0 are readily computed from V and are given in Table 1.

Table I

Efficiencies of the Estimators a C2 c for Selected Values of c

Estimators -.3 -.2 -.1 0 .1 .2 .3 .4 .5 1.0

Uc .738 .908 .982 1 .988 .959 .921 .880 .838 .650
.2
c .631 .825 .964 1 .975 .919 .850 .777 .706 .433

The asymptotic efficiencies remain high over a broad range of values of

c. The influence function for P' and 2 at the Gaussian distribution with

mean 0 and variance a2 are proportional to the score functions (Huber,

1981, p. 45) determined from (3.2) and (3.3) respectively; that is

IC( c ;y,N) (y-,) fc(yl,,a2), (3.8)

ICC( 2;y,'N) {(l+c)(y-P)2 _ a fCcyjv,a ). (3.9)

Both influence functions are bounded and re-descendent to zero for all

c>0. Both estimators c and 2 have high breakdown bounds for sample

sizes nlO.

The data presented in Table 2 are taken from David and Quesenberry

(1961) and are tentatively from a Gaussian population. Also presented



~11

in Table 2 are the final weights Vic for c=O, .3, .5. As c increases

the weights ;ic' i=14,15,16 decrease dramatically indicating that these

observations and the single Gaussian parent assumption may not be mutually

consistent. Of course tail observations will be weighted lower as c

increases even if the data were Gaussian but not to the extent seen here.

The rate of change(v, - v )/C.3-0) = -1.02 is substantial but it
14,.3 14,0

is not known if this is satatistically significant. Resolution of the
distribution of the rate of change statistic seems to be a difficult prob-

lem but one worth some attention and is perhaps best addressed by simu-

lation. The parameter estimates V c and ac are presented in Table 3. As

c increases from 0 the rate of change of c and ac is large. However,

when c is approximately .85, c no longer decreases with c but begins toc

increase. This behavior is typical of the behavior of & when the data are
c

indeed Gaussian. The estimators vc and &c should be approximately inde-

pendent if the data were from a Gaussian population. When c increases

from 0 to .2, the estimated asymptotic correlation p increases from 0 to

.88. However, when c - .85 this estimated correlation is approximately

zero while for c>.85 the correlation becomes negative.

This example captures several aspects of the procedure which hold

generally for Gaussian error models with or without structure. First,

the weights vic can be advantageously used to determine the extent to

which data and model are internally consistent. Observations which receive

low weights are prime candidates for further study. Second, one might

2
expect an estimate of a computed from (3.5) to decrease with increasing

2c. This is not the case. When the data are Gaussian the estimate of a



Table 2

Data and final observational weights i(x1000) for several values of c

Observation c=O c=.3 c=.5

1 .32 62.5 61 55
2 .35 62.5 66 67
3 .37 62.5 69 74
4 .38 62.5 71 77

5 .39 62.5 72 80
6 .44 62.5 76 88
7 .45 62.5 76 88
8 .46 62.5 76 87
9 .47 62.5 76 86

10 .48 62.5 76 85
11 .52 62.5 74 74
12 .53 62.5 73 71
13 .57 62.5 67 55
14 .74 62.5 32 7
15 .74 62.5 32 7
16 1.09 62.5 .09 .34(-3)
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will remain roughly constant or increase slightly as c is increased.

The estimate of U also remains roughly constant as c increases. Numerical

and sample size considerations determine the magnitude which c may take.

We typically find 0<c:1 most useful for the Gaussian distribution although

we have made use of values of c>1 in practical settings. Apart from

numerical difficulties c + max~f(xi)1, i.e. the mode, as c becomes large.

Third, the estimated asymptotic correlation provides a useful diagnostic

in a data analysis. These three comments are based on extensive practical

and simulation experience.

4. Other Distributions

We now show that (2.17) may be used to construct sensitivity

analyses and robust estimators for c variety of distributions other than

the Gaussian. It is worth emphasizing at this point that sensitivity

analyses which are concerned primarily with error models are not of

primary importance because problems associated with error models without

intervening structure are relatively easy to deal with. The main interest

is in having a procedure which is capable of dealing with the combination

of error and structural models since problems with the model or with the

data or with both may be very difficult to detect since, quite often, effi-

cient estimation procedures hide more than they illuminate. At the heart of

these problems is the modeling process itself. The ultimate objective

is to explore and uncover an appropriate, hopefully parsimonious, model



Table 3

Parameter Estimates c and c and Estimated

Asymptotic Correlation

0.0 .5189 .189 0
0.2 .4786 .141 .88
0.3 .4628 .116 .83
0.5 .4456 .091 .56
0.6 .4427 .087 .30
0.7 .4415 .085 .15
0.8 .4410 .085 .05
0.85 .4409 .086 .01
0.9 .4408 .086 -.03
1.0 .4407 .087 -.09
1.5 .4411 .091 -.31
2.0 .4421 .094 -.51

-0.1 .5344 .198 .78
-0.2 .5497 .203 .78
-0.3 .5651 .204 .77
-0.5 .5989 .195 .77
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to describe a body of data. However, once we have in hand a procedure

for various types of error models, the extension to error-structural models

is not nearly as difficult. Few papers have dealt with error models other

than the Gaussian. Thall (1979) has proposed a procedure for the exponen-

tial distribution based on a modification of Huber's procedure. Hampel

(1968) has proposed a general procedure but it does not seem to be numer-

ically viable. The following error distributions are explicitly considered

because they are used in structured situations.

a. The Logistic Distribution. The logistic distribution is a

location and scale family which is not a member of the exponential class

and which is sometimes used in place of the Gaussian distribution. It has

density

l(XjPT) exp((x-.)/r) (4.1)lx'T {I + exp((x-u)/)l ) 2

for T>0, --<u<-. The corresponding distribution function is

L(xI,'T) = exp((x-)/r) (4.2)
1+ expC((x-i.O/r)

The integral

11+c (x1P,T) dx = (_ {L(-L)}c C dx

= -- uc(1-u)c du
Tc f

- B(l+c,l+c) = Q(U,T;c) (4.3)

c

on making the transform u = L(xjii,r). B(1+c,l+c) denotes the complete
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beta function with arguments 1+c and i+c. Estimators uc and Tc are

determined from maximization of the analogue Zc(P,T) of (2.17). We find

with a little effort that the estimators U C c jointly satisfy

n. \x -U
I cxJA)tanh 0-- , (4.4)

i=1
and

n X xi-u
ic(xilPT)|1+(1+c) - tanh 0. (4.5)i=I T \ 2T /I

The equations (4.4) and (4.5) reduce to those of maximum likelihood

when c=O. The score functions at the logistic distribution are propor-

tional to the influence functions and satisfy

S(c;Yl) = ic(YIU,T) tanh (X2l), (4.6)

S( i;Y,l) = 1C(yIU,T) {1+(I+c) Y-0 tanh ( )} (4.7)
T 2 -

both of which are bounded and redescend to zero. The right hand side

of (4.6) is bounded for c=O. The right hand side of (4.7) is, however,

not bounded for c=O and increases linearly in lyl.
b. The Gamma Distribution. The gamma distribution with scale

parameter B and shape parameter a has density

S-1 -x/B
g(xL,) = x e , x > 0 (4.8)

for %, >O. This distribution, especially when a=l, is widely used as

a failure distribution. Using (2.17) we find that the estimators c

c jointly satisfy
c
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n gC(xl) logx((+c)} =0 (4.9)i=1 f o ( - ((c)

n x.
I gC(xilao) {(1+c) - - (c0(c)-c)1 = 0, (4.10)

i=1

when x,,x 2 ,... ,xn is a random sample putatively from the distribution

(4.11). Here *(z) is the digamma function with argument z. As a

special case take a=l. Then the estimator A for the mean of an expo-
C

nential distribution satisfies the implicit equation

n

xi gc(xilxs)
8 (1+c) n g c(Xills)

i=1

-cx./8
(+) x. / ". 1

Xe 1"

Thus observations which are far removed from 8 will receive a low weight-cXI/S

e when c>O.

Even though the estimators & c and ac are in a reasonably attractive

form it is numerically and statistically more appealing to make the

transformation y = log x. The resulting density is

1i

g*(yla,o) = ) exp{a(y- ) - exp(y-,)}, -- <y<-, (4.12)

where * = log 8 plays the role of a location parameter and now a is

similar to a scale parameter. The log-gamma density is unimodal with

well-behaved tails. On evaluating Q*(a,¢;c) corresponding to (4.12) and
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substituting in (2.17) we find direktly that the estimators and

satisfy

n
I gc(yija,0) {exp(yi-0) - l= 0, (4.13)
i=1

n
[ gc (Yi~ 0) {Yi - * + log(l+c) - *(a)} = 0. (4.14)

i= 1

c Ilc)
In this case g,(ycL,O)/Q 1 is bounded in y for all 0 and a>O while

gc(xla,o)/QC/(1+c) is not bounded for a<1 and all c>O as x-0. When the

support of the random variable is nontrivially on (-ca) the information

quantity is always bounded when c>O.

In the special case when a=i and assumed known and only 8 is being

estimated the estimator c satisfies the implicit relationship

n lc-cxi/+C

x. e
Si=1

n -cx.18 (4.15)
x~e 2.

i= 1

as may be verified from (4.13) and letting x ey . The structural

differences in the estimators for B provided by (4.11) and (4.15) are

interesting in their own right.

The score functions for & and ; at the log-gamma distributionc c

with a=2, =0 are plotted in Figure 2 for several values of c. Observe

that the score functions for & and are both unbounded when c=O.
c

c. The Weibull Distribution. The Weibull distribution with shape

parameter k and scale parameter 8 is given by



Figure 2

Score functions for the estimators *and a&

at the log-gamma density, 0=0, a=2.C
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w(xlke) - e ( 1 exp{- 0>0, k>O. (4.16)

It is more convenient to deal with the distribution of y = log x

than with that of x itself. The log-Weibull (or Type I extreme value)

density is given by

w*(ylk,o) = k exp[k(y-0) - exp {k(y-O)}], --<y<-, (4.17)

where 0 log 8. The function

1+ Y d kc r(1+c) (.sQ*(k,*,c) f w (y1k,) dy +c) (4.18)

(1+c)

We thus obtain from (2.16) or (2.17) the joint estimating equations

for the pa ,ameters * and k, respectively,

n
C E- k + k exp{k(yi-O)}] kc exp{ck(yi-0) - c exp{k(yi-¢)1} 0, (.4.19)

.=l i.2

n 1 c1 (l+c) {1 + (yi-O)-(yi-O)exp{k(Yi-0)}}- P] kc exp[ck(Yi-0)

- c exp{k(yi-O)1}] = 0 . (4.20)

Figure 3 depicts the score functions S(k,y,w,) and S(;,y,wA) at the log-

Weibull distribution with *=0 and k=1. These functions are bounded and

redescending to zero when c>O. The estimators are thus qualitatively

robust for fixed c>O. Estimators for k and 8 can also be developed without

the transformation y = log x but we prefer those of (4.19) and (4.20).

The efficiencies of the estimators ; and k and the asymptotic corre-

lation p(fckc) between the estimators are given in Table 4. It is

interesting to observe that for a given index c the efficiencies for the
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Table 4

Joint Asymptotic Relative Efficiencies of the

Log-Weibull (or extreme value) Estimators

c eff. ($) eff. ( ) asym. corr. ($,k)

0.0 1.0 1.0 .313
0.1 .987 .974 .313
0.2 .957 .917 .312
0.3 .919 .847 .311
0.4 .877 .775 .308
0.5 .835 .705 .306
0.6 .793 .639 .303
0.7 .754 .580 .300
0.8 .716 .527 .296
0.9 .680 .479 .293
1.0 .647 .436 .289
1.5 .511 .283 .272
2.0 .414 .193 .256
3.0 .290 .103 .230

0.0 1.0 1.0 .313
-0.1 .980 .961 .314
-0.2 .898 .814 .320
-0.3 .703 .522 .349
-0.4 .325 .155 .475
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estimators of the location parameter * and of the scale parameter k are
very close to those given in Table 1 for the location and scale estimators

of the Gaussian distribution for the same c. For example, the efficiency

of$ 5 is .835 while the efficiency of 1.5 is .838. This characteristic

seems to hold more generally.

d. The Poisson Distribution. The Poisson distribution with mean u

has frequency function

x -ij
Px(xli) = x = 0,1,2 (4.21)

The development of the self-critical estimators is exactly as above.

However, in this case the function

Q(v;c) = Pl +(x 1V) (4.22)

xZO

cannot be evaluated in closed form. The estimator i of P must involve an

iterative evaluation of Q(p;c) in the implicit equation (2.16). If u is

large, a normal approximation to the Poisson may be used, say through

(3.2), to reduce the computational effort. The exact implicit equation

for U is

V(1+c)x-1 / 1l +c

[ pC(x .) - - _ , = 0. (4.23)

j1 1 .(1+c)xAx! )1+c
x=O

e. Clearly, equations (2.16) and (2.17) may be applied to a wide

variety of distributions. For example, the self-critical procedure has

been successfully used for the negative binomial, the binomial, the Pareto

and the multivariate normal distributions in addition to those discussed

here.
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5. An Examp..e

The data in Table 5 represents the time to death of 64 infants.

These infants were ostensibly the victims of sudden infant death syndrome.

Apart from the seven longest survival times, the Weibull model provides

a reasonable model for these data. However, since the hazard function

of the extreme value distribution is strictly increasing, the Weibull

or extreme value model would not be appropriate. Biological considerations

suggest that the hazard function for sudden infant death syndrome should

be first increasing and then decreasing. The lognormal distribution may

provide an appropriate statistical model for these data. Our main purpose,

however, is to illust'ate the procedure we propose. Table 6 provides

the estimates of extreme value and lognormal parameters for various values

of c.

For both the log-Weibull and log-normal models, the variation in c

produces a dramatic change in the response surface generated by the para-

meter estimates. For example, the estimate of k changes from 1.36 to

2.33 as c goes from zero to imity. The estimate of a2 changes from .45

to .20 as c moves from zero to unity. The estimate of e diminishes from

118.9 to 85.4 as c moves from zero to unity. This sensitivity of parameter

estimates to change in the value of c which reflects the way in which the

information is processed indicates the inconsistency of both models with

the data or that some of the data are not consistent with the model.

Of course, a simple probability plot will be equally effective in genera-

ting the same conclusion in the case of unstructured data. However, when

we are dealing with combined structure and error models, inconsistencies



Table 5

Times to Death (in days) in an Epidemiological Study

17 - 77 113

22 63 80 123

25 63 82 128

34 65 87 135

34 65 87 146

34 65 88 148

35 66 92 149

39 66 93 158

42 67 96 160

43 68 99 218

44 73 100 234

54 74 101 267

55 75 102 329

56 76 106 372

57 77 108 455

57 77 110 492

Table 6

Paremeter Estimates for the Sudden

Infant Death Syndrome Data

log-Weibull(n=64) log-normal(n=64) log-gamma(n=64) log-Weibull(n=57)

c 8=0 k &2 .

0 118.9 1.36 4.43 .45 49.7 2.16 89.4 2.43
.3 97.2 1.67 4.39 .38 30.3 2.97 88.3 2.35
.5 89.1 2.14 4.37 .31 21.3 3.94 87.5 2.32

1 85.4 2.33 4.36 .20 15.6 5.19 85.3 2.35
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are often hidden by the c=0 analyses. Many of these inconsistencies may

be uncovered by changing the way in which the data is processed, namely,

by studying the response of parameter estimates and observational weights

to variation in c.

The sensitivity analysis identifies the largest seven and the

smallest three times as being most inconsistent with the log-Weibull or

log-normal model. Early deaths are generally consistent with an alter-

nate mode of failure rather then the sudden infinite death syndrome.

Several of the late deaths, including the latest, were of a suspicious

nature. When the largest seven observations are removed and the analyses

repeated, the parameter estimates and the observational weights vic remain

much more stable as do the parameter estimates for both the log-Weibull

and log-normal models. This is illustrated for the log-Weibull model in

Table 6.

6. Some Regression Models

A great deal of attention has been devoted to robust regression

in the case in which the underlying error distribution is assumed to be

approximately Gaussian. The self-critical procedure we introduced in

section 2 can be expected to be very useful when there are inconsistencies

between model and data in the y-direction. Difficulties in the x-direction,

that is in the factor space, will require augmentation of the procedures

given in section 2. We shall briefly examine the cases in which the error

distribution is Gaussian, extreme value (or log-Weibull), and Poisson.
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First consider the regression model

Yi3 = h(x ,0) + z.. (6.1)

where xi = (xilXi2, ... Xim) is the ith set of values of the m indepen-

dent variables, ni is the number of replicates of the ith experimental

condition, e = (e1e2,' ,Op) T is a pxl vector of unknown parameters,

yij is a particular realization of the experiment, and zi are the error

terms. The regression function h(x,e) relates the expected value of the

dependent variable to the independent variables and the parameters, and

given the and the yij, we wish to estimate e. Assume first that the

zij are approximately Gaussian with mean 0 and variance 0 . Then given

the x., we choose as parameter estimates those values of 8 and a2 which

maximize

c 2
1 n 0n(z~j~~

c 111 - 1 (6.2)
i j EQ(8,o2;c)]C/(+c)

where

n(z. 12x,a2) (2w 2) -  exp{- 1 (yij-h(xi,q)) 2}, (6.3)
20 ~ -

2 2)c1-3and Q(8,o ;c) = [(1+c)(2wao )c] as in (3.1). The joint estimators

of 8 and a2 for various values of c will allow us to perform a sensitivity

analysis.

Type I extreme value regression arises as a natural consequence

of the parametric proportional hazards model of Cox (1972). In this

case the z of (6.1) will follow the distribution (4.15). Estimators

for § and k will be determined from maximization of

t
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cII k)
1 __ ___ ____ ___ _ -(6.4)

c EQ(ek;c)c(1+C)

where

w*(z ij e,x,k) = k exp[k(Yj-f( ) - exp(k(yij-f(xie))1, (6.5)

and Q(O,k;c) is given by (4.15). We have found extreme value regression

to be a useful alternative to the usual Gaussian regression in several

engineering applications where an analysis of the hazard structure

dictated a model other than Gaussian. The ability to perform a sensi-

tivity analysis or a robust analysis in this case has been of considerable

use in model evolution as well.

If we constrain f(x.,e) to be positive we may also develop in a

straightforward fashion a sensitivity analysis or, for fixed c>O, a robust

analysis for Poisson regression. Finally, the procedure of section 2

produces attractive and easy to use procedures for experimental design.

We shall consider the regression and design topics elsewhere.

7. Asymptotic Covariances and Efficiencies

The self-critical estimators are M-estimators and as such are

consistent and asymptotically normal under regularity conditions similar

to those of regular maximum likelihood estimators. Just as in the case

of maximum likelihood, c=0, we cannot always be sure that there will

be a unique solution for the estimating equations. From among the local

optima, the consistent solution is assumed to be the one taken.

Asymptotic variance-covariance matrices of the estimators are readily
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determined from (2.16) or (2.17) by standard expansion arguments. Let

XlX2,... ,x be a random sample from the density or frequency function
2e T

f(xI§) where e = (6 1,8 2,..., p)T is a pxl vector of parameters. Let

X c-1 fC(x'-Q)pQ(O;c)lc I,- 1 (7.1)

where the random variable X has the same distribution as the x.. Then

the asymptotic variance-covariance matrix for the estimator § is~C

determined from the matrices V and I whose elements are given by

Vee = E ( e '" (7.2)

2  
-_a t cx \

Hee = ",E' ' ' (7.3)
eel' e e

where e, e' elle 2 ,... ,eP. The asymptotic covariance matrix of the
estimator 6 is

n H-1 H- 1. (7.4)

From (2.15) we have

f f+c (1+c) a log f a logf Q dx 0;

differentiating this expression with respect to 8' we find

[(1+c) f i+c ad10 f (1+c) 3log f a 1og Q +f ______a lg
ae ae I+ aeae,

a o 2 j0 J dx = 0
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which implies

E fc logf log f 1 a logQ 1 c a2 Qogf
ae' ae l+c B8 1 -+c-- f I aeae,

(1+c) 102eo 21 (7.5)

a generalization of Fisher's information identity. We thus find that

a2 c - 2 c 3log f I1. 32 log Q
H88  jE[ lX E 388 f-- ee (7.6)

while

V E 2c a log f I logQ\(1 o 1 Q\](7.7)ee' ae 14-c ae A ae' 1-+c ae']J"

The expressions (7.6) and (7.7) are often easy to evaluate. Equation

(7.4) has been used to produce the efficiencies quoted in section 3 and

4. Both (7.6) and (7.7) are easy to approximate in the practical setting

where the true value of 8 is not known, for example

2
n cx.

eel n-1  aeae, 3 , (7.8)

or the estimators may be substituted directly in the expression for

expectations.

Based on simulation experience, the estimators -0c approach their

asymptotic distributions very rapidly, often for n as small as 10 and

20. This is due to the smoothing induced by tht- term fc in (2.16).
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8. Additional Families of Estimators and Discussion

Let f(xle) be continuous density defined over the nontrivial

interval of support (-cw) and let 8 take on values in an open set e.

Let g(xl8) be a function of x over --<x<-, eOe. Suppose further that

there exits a function k (8) such that

g

f(xe) g(xlO) dx k (8). (8.1)

We have then that the inner product of f with g is normalized by

k (e), i.e.
g

| r f(xle) g(xle)
dx =1. (8.2)

Under mild regularity conditions

ff jxf a log f alog_
g1  + lo a lg dx. (8.3)ae k k e .. ael

If xl,x 2 ...,xn is a random sample from f(xle), then an estimator for

e may be determined from the consistent zero of (see (2.15))

n a log f(x.ile) a log g(xile) a log k
Z gxil8) 3e + s- 0. (8.4)

i=1

Because we have taken g(x~i8) to be fc(x-1O), in sections 2-6, we have

termed the estimators of this paper self-critical. The choice fc(x.18)
I

sees to be most useful in practice although the estimators determined

from (8.4) may prove to be useful in some contexts.

4
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The procedure proposed in this paper is envisioned to be of

greatest use in sensitivity analysis and model evolution settings. It

also provides a tool for the identification of outliers in the structural

data case since the model plays a direct role (through the fC term in

(2.16) or (2.17)) in the processing of information. finally, we have

provided a general, easily used, computationally attractive procedure

which stems from a single primitive concept for the construction of simul-

taneous robust estimators.

I.



27

References

1. Barnett, V. and Lewis, T. (1978). Outliers in Statistical Data.
New York: Wiley.

2. Cox, D.R. (1972). Regression models and life tables. Journal of
the Royal Statistical Society, B, 34, 187-220.

3. David, H.A. and Quesenberry, C.P. (1961). Some tests for outliers.
Biometrika, 48, 379-390.

4. Hampel, F. (1968). Contributions to the Theory of Robust Estimation.
Unpublished Ph.D. dissertation, University of California-Berkeley.
Ann Arbor: University Microfilms.

5. Huber, P.J. (1964). Robust estimation of a location parameter.
Annals of Mathematical Statistics, 35, 73-101.

6. Huber, P.J. (1981). Robust Statistics. New York: Wiley.

7. Kendall, M.G. and Stuart, A. (1961). The Advanced Theory of Statistics,
Vol. II, New York: Hafner.

8. Paulson, A.S. and Nicklin, E.H. (1982). The form, and some robustness
properties, of integrated distance estimators for linear models,
applied to some published data sets. To appear in Applied Statistics.

9. Rey, W.J.J. (1977). Robust Statistical Methods. New York: Springer-
Verlag.

10. Thall, P.F. (1979). Huber-sense robust M-estimations of a scale para-
meter, with application to the exponential distribution. Journal of
the American Statistical Association, 74, 147-152.



* I

ZECURITY CLASSIFICATION OF THIS PAGE (7he nta r nteroc

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPL.ETING FORM

1. REPORT NUMBER 12 OVT ACCESSION NO. 3. REcipiNTivS CATALOG NUMBER

4. TITLE (and Subtitle) S. "fYPE OF REPORT & PERIOD COVERED

SELF-CRITICAL AND ROBUST PROCEDURES Interim Technical Report
FOR THE ANALYSIS OF UNIVARIATE COMPLETE DATA 6. PERFORMNG ORG. REPORT NUMBER

A-5

7. AUTHOR q) S. CONTRACT OR GRANT NUMBER(&)

A.S. Paulson
M.A. Presser DAA G29-81-K-0110

E.H. Nicklin
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

Rensselaer Polytechnic Institute
Troy, New York 12181

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Approved for I'ubli4: re'1en&; disribtiot June 1982

,nlimited. "•13. NUMBER OF PAGES

!h 35
14. MONITORING AGENCY NAME & AOORESS(II dlfferent from Controllng 0 co) 1S. SECURITY CLASS. (of this report)

Department of the Navy
Office of Naval Research
715 Broadway (5th Floor) Is.. OECLASSIFICATION/OWNGRAOING715 roaday (th Foor)SCHEDULE

New York, New York 10003
16. OISTRIBUTION STATEMENT (of this Report)

A S--. Arm , Restarrh 0ffic "
.. Post O'ic~e Box 12211

Research Triangle Park. %k' 27709

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. If dlfferent from Report)

II. SUPPLEMENTARY NOTES
17,MI-I VlIFW, OPINIONS. ANDORl INDINOn , ,-lp 'r 9"O'rP

ARE TMOSE OF T.4FAtJTI' lS) AN' V"7 !7" A3**
AN OFF;CAL DEPARIMENT OF THE ARMY :. £.' *:.

CISION, UNLESS SO DEGNATEO BY OTHi.P [;;U,.UMW,-!.IA ;:ON.

19. KEY WOO'SfCqntlho. on rover solds II nooceomy nIdlntify by block number)
sensitivity analysis, robust procedure, Gaussian, logistic, Wiebull,
extreme value, Poisson, generalized likelihood

M AMTfRAC? (Ca= dom r en DI N 010 0A ldw~lf1 &F block macber)A statistical sensitivity analysis may be defined and performed in terms
of the response of a vector of parameter estimates to variation in the way
sample information is processed vis-a-vis the tentative underlying model. The
mode of information processing is a generalization of likelihood and is indexed
on a non-statistical parameter c. The case c=0 corresponds to maximum likeli-
hood. If the vector of parameter estimates is stable under moderate increase
of the index c from 0, the tentative model and the data are internally con-
sistent. A general procedure for the conduct of such sensitivity analyses is

DI " 14W3 E o11ION or I Nov as is Om.OLETe

SECUIIT' CLLASSIFICATIOM OF THIS PAGE (Whotm Daa ntff~d)



SIECURITY CLASUSCATION OF THIS PAOIK(Mben DOt 8400804

(9 20. Abstract (cont'd)

given along with several illustrations. For fixed, positive values of
the index, one obtains a general robust estimation procedure.

IIUUNY CLASIPMIAI@W Of MgI PAO~flhb" Date 3,lm-9


